A sparse spectral method for Volterra integral equations

Timon S. Gutleb, Sheehan Olver

Imperial College London

28th Biennial Numerical Analysis Conference, June 2019

- 1 Introduction
- 2 Spectral method for Volterra integral equations
- **3** Quick notes on convergence
- 4 Implementation in Julia under ApproxFun.jl framework

Introduction

Volterra integral equations

Introduction

Define the Volterra integral operator

$$(\mathcal{V}_{\mathcal{K}}u)(x) := \int_0^{\ell(x)} \mathcal{K}(x,y)u(y) \mathrm{d}y,$$

where K(x, y) is called the kernel, u(y) is a given function of one variable. The limits of integration are either

$$\ell(x) = x$$
 or $\ell(x) = 1 - x$.

We introduce a sparse spectral method to find numerical approximations to the solution of Volterra integral equations of the first and second kind, i.e. to find *u* satisfying

$$\mathcal{V}_K u = g$$
 or $(I + \mathcal{V}_K)u = g$.

Volterra integral equations

Introduction

Define the Volterra integral operator

$$(\mathcal{V}_{\mathcal{K}}u)(x) := \int_0^{\ell(x)} \mathcal{K}(x,y)u(y)\mathrm{d}y,$$

where K(x, y) is called the kernel, u(y) is a given function of one variable. The limits of integration are either

$$\ell(x) = x$$
 or $\ell(x) = 1 - x$.

We introduce a sparse spectral method to find numerical approximations to the solution of Volterra integral equations of the first and second kind, i.e. to find u satisfying

$$\mathcal{V}_K u = g$$
 or $(I + \mathcal{V}_K)u = g$.

Function approximation with orth. polynomials

Introduction

We expand functions using a complete basis of orthogonal polynomials:

$$f(x) = \sum_{n=0}^{\infty} P_n(x) f_n = \mathbf{P}(x)^{\mathsf{T}} \mathbf{f},$$

where

$$\mathbf{P}(x) := \begin{pmatrix} P_0(x) \\ P_1(x) \\ \vdots \end{pmatrix}, \quad \mathbf{f} := \begin{pmatrix} f_0 \\ f_1 \\ \vdots \end{pmatrix}.$$

This works analogously for bivariate orthogonal polynomials

$$f(x,y) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} P_{n,k}(x,y) f_{n,k}.$$

Function approximation with orth. polynomials

Introduction

We expand functions using a complete basis of orthogonal polynomials:

$$f(x) = \sum_{n=0}^{\infty} P_n(x) f_n = \mathbf{P}(x)^{\mathsf{T}} \mathbf{f},$$

where

$$\mathbf{P}(x) := \begin{pmatrix} P_0(x) \\ P_1(x) \\ \vdots \end{pmatrix}, \quad \mathbf{f} := \begin{pmatrix} f_0 \\ f_1 \\ \vdots \end{pmatrix}.$$

This works analogously for bivariate orthogonal polynomials

$$f(x,y) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} P_{n,k}(x,y) f_{n,k}.$$

Introduction

We can compute xf(x) if f(x) is given in coefficient vector form:

 $\mathbf{P}(x)^{\mathsf{T}}\mathbf{J}^{\mathsf{T}}\mathbf{f} = xf(x).$

This is efficiently possible because the Jacobi polynomials satisfy a three term recurrence relationship, making J a tridiagonal operator.

Analogously on the triangle

Introduction

We use the Jacobi polynomials shifted to the [0,1] interval and denote them by $\tilde{\mathbf{P}}^{(\alpha,\beta)}$, which allows us to write the bivariate Jacobi polynomials on the triangle as:

$$P_{k,n}^{(\alpha,\beta,\gamma)}(x,y) = (1-x)^k \tilde{P}_{n-k}^{(2k+\beta+\gamma+1,\alpha)}(x) \tilde{P}_k^{(\gamma,\beta)}\left(\frac{y}{1-x}\right).$$

As in the 1-dimensional case we can define Jacobi operators (now block tridiagonal) J_x and J_v, one for each variable:

$$\mathbf{P}(x, y)^{\mathsf{T}} \mathbf{J}_{x}^{\mathsf{T}} \mathbf{f}_{\Delta} = x f(x, y),$$
$$\mathbf{P}(x, y)^{\mathsf{T}} \mathbf{J}_{y}^{\mathsf{T}} \mathbf{f}_{\Delta} = y f(x, y).$$

Analogously on the triangle

Introduction

We use the Jacobi polynomials shifted to the [0,1] interval and denote them by $\tilde{\mathbf{P}}^{(\alpha,\beta)}$, which allows us to write the bivariate Jacobi polynomials on the triangle as:

$$P_{k,n}^{(\alpha,\beta,\gamma)}(x,y) = (1-x)^k \tilde{P}_{n-k}^{(2k+\beta+\gamma+1,\alpha)}(x) \tilde{P}_k^{(\gamma,\beta)}\left(\frac{y}{1-x}\right).$$

As in the 1-dimensional case we can define Jacobi operators (now block tridiagonal) J_x and J_y , one for each variable:

$$\begin{split} \mathbf{P}(x,y)^{\mathsf{T}} \mathbf{J}_{x}^{\mathsf{T}} \mathbf{f}_{\Delta} &= x f(x,y), \\ \mathbf{P}(x,y)^{\mathsf{T}} \mathbf{J}_{y}^{\mathsf{T}} \mathbf{f}_{\Delta} &= y f(x,y). \end{split}$$

Spectral method for Volterra integral equations

Spectral method for Volterra integral equations

The Volterra operator on coefficient space

Spectral method for Volterra integral equations

We build the operator

$$\int_0^{1-x} f(y) \mathrm{d}y = \mathbf{P}(x)^\mathsf{T} \mathrm{W}_\mathrm{Q} \mathrm{Q}_y \mathrm{E}_y \mathbf{f}_{[0,1]}$$

from two parts:

1 Q_y is the integral operator

$$\mathbf{P}(x)^{\mathsf{T}} \mathbf{W}_{\mathbf{Q}} \mathbf{Q}_{y} \mathbf{f}_{\Delta} = \int_{y=0}^{1-x} f(x, y) \mathrm{d}y,$$

2 E_v extends a one-dimensional function on [0,1] to the triangle:

 $\mathbf{P}(x, y)^{\mathsf{T}} \mathbf{E}_{y} \mathbf{f}_{[0,1]} = \mathbf{P}(x)^{\mathsf{T}} \mathbf{f}_{[0,1]}.$

The Volterra operator on coefficient space

Spectral method for Volterra integral equations

We build the operator

$$\int_0^{1-x} f(y) \mathrm{d}y = \mathbf{P}(x)^\mathsf{T} \mathrm{W}_\mathrm{Q} \mathrm{Q}_y \mathrm{E}_y \mathbf{f}_{[0,1]}$$

from two parts:

1 Q_y is the integral operator

$$\mathbf{P}(x)^{\mathsf{T}} \mathbf{W}_{\mathbf{Q}} \mathbf{Q}_{y} \mathbf{f}_{\Delta} = \int_{y=0}^{1-x} f(x, y) \mathrm{d}y,$$

E_v extends a one-dimensional function on [0,1] to the triangle:

 $\mathbf{P}(x, y)^{\mathsf{T}} \mathbf{E}_{y} \mathbf{f}_{[0,1]} = \mathbf{P}(x)^{\mathsf{T}} \mathbf{f}_{[0,1]}.$

The Volterra operator on coefficient space

Spectral method for Volterra integral equations

We build the operator

$$\int_0^{1-x} f(y) \mathrm{d}y = \mathbf{P}(x)^\mathsf{T} \mathrm{W}_\mathrm{Q} \mathrm{Q}_y \mathrm{E}_y \mathbf{f}_{[0,1]}$$

from two parts:

1 Q_y is the integral operator

$$\mathbf{P}(x)^{\mathsf{T}} \mathbf{W}_{\mathbf{Q}} \mathbf{Q}_{y} \mathbf{f}_{\Delta} = \int_{y=0}^{1-x} f(x, y) \mathrm{d}y,$$

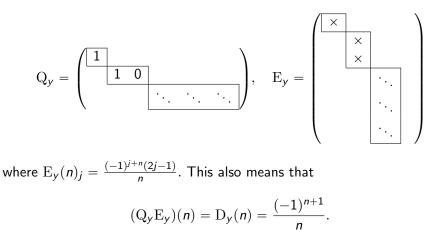
2 E_y extends a one-dimensional function on [0,1] to the triangle:

$$\mathbf{P}(x,y)^{\mathsf{T}} \mathbf{E}_{y} \mathbf{f}_{[0,1]} = \mathbf{P}(x)^{\mathsf{T}} \mathbf{f}_{[0,1]}.$$

The operators

Spectral method for Volterra integral equations

Using properties of the Jacobi polynomials one can derive



Dealing with kernels

Spectral method for Volterra integral equations

Assuming a monomial expansion for the kernel¹

$$K(x,y) = \sum_{n=0}^{\infty} \sum_{j=0}^{n} k_{nj} x^{n-j} y^j,$$

the primary part of the Volterra integration operator is

$$\begin{aligned} \mathbf{Q}_{y} \mathcal{K}(\mathbf{J}_{x}^{\mathsf{T}}, \mathbf{J}_{y}^{\mathsf{T}}) \mathbf{E}_{y} &= \mathbf{Q}_{y} \left(\sum_{n=0}^{\infty} \sum_{j=0}^{n} k_{nj} (\mathbf{J}_{x}^{\mathsf{T}})^{n-j} (\mathbf{J}_{y}^{\mathsf{T}})^{j} \right) \mathbf{E}_{y} \\ &= \sum_{n=0}^{\infty} \sum_{j=0}^{n} k_{nj} (\mathbf{J}^{\mathsf{T}})^{n-j} \mathbf{Q}_{y} \mathbf{E}_{y} (\mathbf{J}^{\mathsf{T}})^{j}. \end{aligned}$$

where we made use of

$$\begin{split} \mathbf{Q}_{y}\mathbf{J}_{x}^{\mathsf{T}}\mathbf{f}_{\Delta} &= \mathbf{J}^{\mathsf{T}}\mathbf{Q}_{y}\mathbf{f}_{\Delta}, \\ \mathbf{J}_{y}^{\mathsf{T}}\mathbf{E}_{y}\mathbf{f}_{[0,1]} &= \mathbf{E}_{y}\mathbf{J}^{\mathsf{T}}\mathbf{f}_{[0,1]} \end{split}$$

¹We actually use a modified variation of Clenshaw's algorithm on the triangle due to see S. Olver, A. Townsend and G. Vasil (2019).

Dealing with kernels

Spectral method for Volterra integral equations

Assuming a monomial expansion for the kernel¹

$$\mathcal{K}(x,y) = \sum_{n=0}^{\infty} \sum_{j=0}^{n} k_{nj} x^{n-j} y^{j},$$

the primary part of the Volterra integration operator is

$$\begin{aligned} \mathbf{Q}_{y} \mathcal{K}(\mathbf{J}_{x}^{\mathsf{T}}, \mathbf{J}_{y}^{\mathsf{T}}) \mathbf{E}_{y} &= \mathbf{Q}_{y} \left(\sum_{n=0}^{\infty} \sum_{j=0}^{n} k_{nj} (\mathbf{J}_{x}^{\mathsf{T}})^{n-j} (\mathbf{J}_{y}^{\mathsf{T}})^{j} \right) \mathbf{E}_{y} \\ &= \sum_{n=0}^{\infty} \sum_{j=0}^{n} k_{nj} (\mathbf{J}^{\mathsf{T}})^{n-j} \mathbf{Q}_{y} \mathbf{E}_{y} (\mathbf{J}^{\mathsf{T}})^{j}. \end{aligned}$$

where we made use of

$$\begin{split} \mathbf{Q}_y \mathbf{J}_x^\mathsf{T} \mathbf{f}_{\boldsymbol{\Delta}} &= \mathbf{J}^\mathsf{T} \mathbf{Q}_y \mathbf{f}_{\boldsymbol{\Delta}}, \\ \mathbf{J}_y^\mathsf{T} \mathbf{E}_y \mathbf{f}_{[0,1]} &= \mathbf{E}_y \mathbf{J}^\mathsf{T} \mathbf{f}_{[0,1]} \end{split}$$

¹We actually use a modified variation of Clenshaw's algorithm on the triangle due to see S. Olver, A. Townsend and G. Vasil (2019).

Dealing with kernels

Spectral method for Volterra integral equations

Assuming a monomial expansion for the kernel¹

$$\mathcal{K}(x,y) = \sum_{n=0}^{\infty} \sum_{j=0}^{n} k_{nj} x^{n-j} y^{j},$$

the primary part of the Volterra integration operator is

$$\begin{split} \mathbf{Q}_{y} \mathcal{K}(\mathbf{J}_{x}^{\mathsf{T}},\mathbf{J}_{y}^{\mathsf{T}}) \mathbf{E}_{y} &= \mathbf{Q}_{y} \left(\sum_{n=0}^{\infty} \sum_{j=0}^{n} k_{nj} (\mathbf{J}_{x}^{\mathsf{T}})^{n-j} (\mathbf{J}_{y}^{\mathsf{T}})^{j} \right) \mathbf{E}_{y} \\ &= \sum_{n=0}^{\infty} \sum_{j=0}^{n} k_{nj} (\mathbf{J}^{\mathsf{T}})^{n-j} \mathbf{Q}_{y} \mathbf{E}_{y} (\mathbf{J}^{\mathsf{T}})^{j}. \end{split}$$

where we made use of

$$\begin{split} \mathbf{Q}_{y}\mathbf{J}_{x}^{\mathsf{T}}\mathbf{f}_{\Delta} &= \mathbf{J}^{\mathsf{T}}\mathbf{Q}_{y}\mathbf{f}_{\Delta},\\ \mathbf{J}_{y}^{\mathsf{T}}\mathbf{E}_{y}\mathbf{f}_{[0,1]} &= \mathbf{E}_{y}\mathbf{J}^{\mathsf{T}}\mathbf{f}_{[0,1]}. \end{split}$$

¹We actually use a modified variation of Clenshaw's algorithm on the triangle due to see S. Olver, A. Townsend and G. Vasil (2019).

The method for integral equations

Spectral method for Volterra integral equations

Equations of first kind, $V_{\mathcal{K}}u = g$, turn into

$$\tilde{\mathbf{P}}^{(1,0)}(x)^{\mathsf{T}} \mathbf{Q}_{y} \mathcal{K}(\mathbf{J}_{x}^{\mathsf{T}},\mathbf{J}_{y}^{\mathsf{T}}) \mathbf{E}_{y} \mathbf{u} = \tilde{\mathbf{P}}^{(1,0)}(x)^{\mathsf{T}} \mathbf{q},$$

where now **q** is the coefficient vector of $q(x) = \frac{g(x)}{1-x}$.

Equations of second kind, $(I + V_K)u = g$, turn into

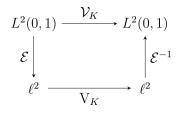
$$\tilde{\mathbf{P}}^{(1,0)}(x)^{\mathsf{T}}\left(\mathbb{1}-(\mathbb{1}-\mathbf{J}^{\mathsf{T}})\mathbf{Q}_{y}\mathcal{K}(\mathbf{J}_{x}^{\mathsf{T}},\mathbf{J}_{y}^{\mathsf{T}})\mathbf{E}_{y}\right)\mathbf{u}=\tilde{\mathbf{P}}^{(1,0)}(x)^{\mathsf{T}}\mathbf{g}.$$

Quick notes on convergence

Quick notes on convergence

Sketch for second kind

Quick notes on convergence



For Volterra integral equations of second kind the operator to be inverted is of the form $(1 + V_K)$ and V_K compact.

Sketch for first kind (I)

Quick notes on convergence

Since V_K compact from ℓ^2 to ℓ^2 we instead consider $V_K : \ell^2 \to \ell_1^2$ where ℓ_λ^2 denotes the Banach space with norm

$$\|\mathbf{u}\|_{\ell^2_{\lambda}} = \sqrt{\sum_{n=0}^{\infty} \left((1+n)^{\lambda} |u_n|\right)^2} < \infty.$$

Then the operator can be brought into the form

$$\mathbf{V}_{\mathbf{K}} = \mathbf{D}(\mathbf{T}_{\mathbf{f}} + \mathbf{C}),$$

where T is a symmetric Toeplitz operator with real entries and with symbol f, C is compact and D is diagonal, bounded and invertible.

Sketch for first kind (I)

Quick notes on convergence

Since V_K compact from ℓ^2 to ℓ^2 we instead consider $V_K : \ell^2 \to \ell_1^2$ where ℓ_λ^2 denotes the Banach space with norm

$$\|\mathbf{u}\|_{\ell^2_\lambda} = \sqrt{\sum_{n=0}^\infty \left((1+n)^\lambda |u_n|\right)^2} < \infty.$$

Then the operator can be brought into the form

$$\mathbf{V}_{\boldsymbol{K}} = \mathbf{D}(\mathbf{T}_{\boldsymbol{f}} + \mathbf{C}),$$

where T is a symmetric Toeplitz operator with real entries and with symbol f, C is compact and D is diagonal, bounded and invertible.

Quick notes on convergence

The symbol of the Toeplitz operator part is uniquely determined by the coefficients of the kernel to be

$$f(z) = \sum_{n=0}^{M} \sum_{j=0}^{n} k_{nj} \cos^{2n}\left(\frac{\theta}{2}\right)$$
 where $z = e^{i\theta}$.

The resulting condition for convergence of the method is found to be:

 $\forall x \in [0,1] : K(x,x) \neq 0.$

Implementation in Julia under ApproxFun.jl framework

Implementation in Julia under ApproxFun.jl framework

Timon S. Gutleb, Sheehan Olver

A sparse spectral method for Volterra integral equations

Three examples

Implementation in Julia under ApproxFun.jl framework

We seek numerical solutions u_1 , u_2 and u_3 to the following three Volterra integral equations of second kind.

Let
$$C(x) = \frac{e^{-10\pi x}(1+20\pi)-2+\cos(10\pi x)+\sin(10\pi x)}{20\pi}$$
.
 $u_1(x) = C(x) + \int_0^x (1-\cos(10\pi x-10\pi y)) u_1(y) dy$ (1)
 $u_2(x) = \frac{e^{\frac{x}{2}}}{\pi} + \int_0^x (\sin(10\pi x) + \cos(10\pi y)) u_2(y) dy$ (2)
 $u_3(x) = e^{x^2-2x} + \int_0^{1-x} (-2x + y + \sin(25x^2 + 8\pi y)) u_3(y) dy$ (3)

A look at the kernels and operators

Implementation in Julia under ApproxFun.jl framework

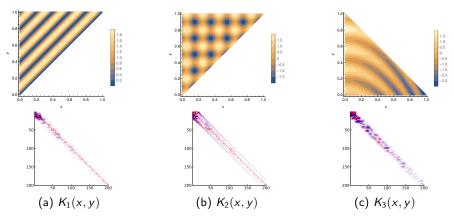


Figure: Kernel contour plots and operator spy plots.

Convergence of numerical experiments

Implementation in Julia under ApproxFun.jl framework

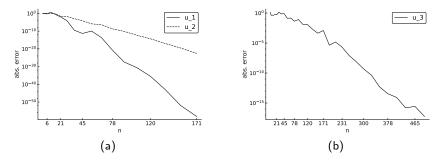


Figure: Absolute errors for equations (1–3). $u_1(x)$ is compared to the analytic solution, $u_2(x)$ and $u_3(x)$ are compared to a solution computed with n = 5050.

- The Volterra integral operator is banded on an appropriate basis of orthogonal polynomials.
- This can be used in a highly efficient sparse spectral method for Volterra integrals and integral equations.
- The method is not restricted to convolution kernels.
- We have a working implementation of this method under ApproxFun.jl framework.
- As it is the method only works for linear Volterra integral equations but an extension to non-linear cases is conceivable - we are working on it.

- The Volterra integral operator is banded on an appropriate basis of orthogonal polynomials.
- This can be used in a highly efficient sparse spectral method for Volterra integrals and integral equations.
- The method is not restricted to convolution kernels.
- We have a working implementation of this method under ApproxFun.jl framework.
- As it is the method only works for linear Volterra integral equations but an extension to non-linear cases is conceivable - we are working on it.

- The Volterra integral operator is banded on an appropriate basis of orthogonal polynomials.
- This can be used in a highly efficient sparse spectral method for Volterra integrals and integral equations.
- The method is not restricted to convolution kernels.
- We have a working implementation of this method under ApproxFun.jl framework.
- As it is the method only works for linear Volterra integral equations but an extension to non-linear cases is conceivable - we are working on it.

- The Volterra integral operator is banded on an appropriate basis of orthogonal polynomials.
- This can be used in a highly efficient sparse spectral method for Volterra integrals and integral equations.
- The method is not restricted to convolution kernels.
- We have a working implementation of this method under ApproxFun.jl framework.
- As it is the method only works for linear Volterra integral equations but an extension to non-linear cases is conceivable - we are working on it.

- The Volterra integral operator is banded on an appropriate basis of orthogonal polynomials.
- This can be used in a highly efficient sparse spectral method for Volterra integrals and integral equations.
- The method is not restricted to convolution kernels.
- We have a working implementation of this method under ApproxFun.jl framework.
- As it is the method only works for linear Volterra integral equations but an extension to non-linear cases is conceivable - we are working on it.

The algorithm makes use of the polynomial basis' recurrence relationships to reduce function evaluation to the solution of a triangular linear system:

$$\mathbf{Q}_{\mathbf{y}}\mathcal{K}(\mathbf{J}_{\mathbf{x}},\mathbf{J}_{\mathbf{y}})\mathbf{E}_{\mathbf{y}} = (\mathbf{e}_{\mathbf{0}}\otimes\mathbb{1})\mathcal{L}_{\mathbf{V}}^{-\mathsf{T}}(\mathbf{K}_{\boldsymbol{\Delta}}\otimes\mathbf{Q}_{\mathbf{y}}\mathbf{E}_{\mathbf{y}}),$$

with

$$\mathcal{L}_{V} = \begin{pmatrix} (\mathbb{1}_{1} \otimes \mathbb{1}) & & \\ (A_{0}^{x} \otimes \mathbb{1}) - (\mathbb{1}_{1} \otimes \mathrm{J} \diamond) & (B_{0}^{x} \otimes \mathbb{1}) \\ (A_{0}^{y} \otimes \mathbb{1}) - (\mathbb{1}_{1} \otimes \diamond \mathrm{J}) & (B_{0}^{y} \otimes \mathbb{1}) \\ (C_{0}^{x} \otimes \mathbb{1}) & (A_{1}^{x} \otimes \mathbb{1}) - (\mathbb{1}_{2} \otimes \mathrm{J} \diamond) & (B_{1}^{x} \otimes \mathbb{1}) \\ (C_{0}^{y} \otimes \mathbb{1}) & (A_{1}^{x} \otimes \mathbb{1}) - (\mathbb{1}_{2} \otimes \diamond \mathrm{J}) & (B_{1}^{y} \otimes \mathbb{1}) \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

After appropriate preconditioning this system can be solved via backward substitution, see S. Olver, A. Townsend and G. Vasil (2019).